留学 论文代写:儿童数学和科学学习的主要原则

留学 论文代写:儿童数学和科学学习的主要原则

目的是突出和评价科学和数学教育中当代和学习实践的几个观点和理论。首先,本文将讨论构建幼儿科学和数学理解和思维过程的具体原则。接下来,本文讨论了几个教学实践,使科学和数学学习和过程的有效性在最初的学年。进一步,为科学和数学教育提供可能的策略的例子,结束语的要点将为本文起草。

留学 论文代写:儿童数学和科学学习的主要原则

从学习的最初阶段开始,孩子们就应该对数学和科学表现出兴趣和成功,并建立起承担风险、寻求问题和探索替代解决方案的信心。孩子们开始喜欢探索和应用数学和科学概念来理解和解决问题(Dunning et al., 2013)。这进一步帮助他们解释他们的思维过程,并以不同的方法提出解决方案。在学习的每一个阶段,都有必要通过讨论数学概念和思想来关注协作学习,以鼓励孩子们进行创造性和逻辑推理。为了支持儿童高质量的科学和数学学习,各机构认识到以下原则:

原则1:增强儿童对数学和科学的自然兴趣,以及他们在合理的社会和物理世界中利用数学的倾向(Campbell和Chealuck, 2015)。

原则2:以社区、文化、语言和家庭背景、非正式知识和个人学习方法为基础,建立儿童的知识和经验。

原则3:建立科学和数学教学实践的基础和关于幼儿社会情感、身体、语言和认知发展的知识的课程。

原则4:利用教学实践和课程,加强推理和解决问题的过程以及数学思想的联系、交流和表达(Boaler, 2015)。

原则5:确保课程与已知的顺序以及重要的科学和数学思想之间的关系的一致性和兼容性。

原则6:以主要的数学概念为儿童提供深入而持续的互动。

原则7:在额外的活动中整合数学和科学,反之亦然(Beatty and Gerace, 2009)。

原则8:为儿童参与游戏活动提供足够的资料、时间和教师支援。在这个背景下,数学思想被操纵和探索,并对游戏产生了浓厚的兴趣。

原则9:通过适当的教学策略和经验,积极引入数学和科学的语言、方法和概念。

原则10:通过对具有正确策略和技能的儿童的数学和科学知识的持续和深思熟虑的评估来支持儿童的学习(Siraj‐Blatchford, 2010)。

留学 论文代写:儿童数学和科学学习的主要原则

The aim of this is to highlight and evaluate several perspectives and theories of contemporary and learning practices in science and mathematics education. First, the essay will discuss upon specific principles underlying the construction of scientific and mathematical understanding and thinking processes in young children. Next, the essay discusses about several teaching practices that enable effectiveness in scientific and mathematical learning and processes during the initial school years. Further ahead, providing examples of possible strategies for scientific and mathematical education, key points of conclusion will be drafted for the essay.

留学 论文代写:儿童数学和科学学习的主要原则

Since the initial stages of learning, children should show interest and success in mathematics and science and establish the confidence of taking risks, seeking questions and exploring alternate solutions. Children start enjoying the exploration and application of mathematical and scientific concepts for understanding and solving problems (Dunning et al., 2013). This further assists them to explain their thought process and present solutions with different approach. At every stage of learning, it is necessary to focus on collaborative learning for the encouragement of creative and logical reasoning in children by discussing mathematical concepts and ideas. For the purpose of supporting high quality scientific and mathematical learning in children, institutions perceive the following principles:

Principle 1: Enhancing the natural interest of children in mathematics and science along with their disposition to utilize it in the sensible social and physical worlds (Campbell and Chealuck, 2015).

Principle 2: Building the knowledge and experience of children with the inclusion of community, cultural, linguistic and family backgrounds, their informal knowledge and individual learning approaches.

Principle 3: Establishing the base of scientific and mathematical teaching practices and curriculum on knowledge about social-emotional, physical, linguistic and cognitive development of young children.

Principle 4: Utilizing teaching practices and curriculum strengthening the reasoning and problem-solving processes along with the connection, communication and representation of mathematical ideas (Boaler, 2015).

Principle 5: Ensuring the coherence and compatibility of curriculum with known sequences and relationships of significant scientific and mathematical ideas.

Principle 6: Providing deep and sustained interaction for children with major mathematical ideas.

Principle 7: Integrating mathematics and science in additional activities and vice versa (Beatty and Gerace, 2009).

Principle 8: Providing sufficient materials, time and teacher support for engagement of children in play activities. This is a context in which mathematical ideas are manipulated and explored with keen interest in a game.

Principle 9: Actively introducing mathematical and scientific language, methods and concepts by a number of appropriate teaching strategies and experiences.

Principle 10: Supporting learning in children by the continuous and thoughtful assessment of mathematical and scientific knowledge of children with the right strategies and skills (Siraj‐Blatchford, 2010).